Search results
Results From The WOW.Com Content Network
Plant spores designed for dispersal are also referred to as diaspores. Plant spores are most obvious in the reproduction of ferns and mosses. However, they also exist in flowering plants where they develop hidden inside the flower. For example, the pollen grains of flowering plants develop out of microspores produced in the anthers.
A pteridophyte is a vascular plant (with xylem and phloem) that reproduces by means of spores. Because pteridophytes produce neither flowers nor seeds, they are sometimes referred to as "cryptogams", meaning that their means of reproduction is hidden. They are also the ancestors of the plants we see today.
In biology, a spore is a unit of sexual (in fungi) or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. [1] Spores form part of the life cycles of many plants, algae, fungi and protozoa. [2]
[citation needed] In the seed plants, the largest groups of which are the gymnosperms and flowering plants (angiosperms), the sporophyte phase is more prominent than the gametophyte, and is the familiar green plant with its roots, stem, leaves and cones or flowers. In flowering plants, the gametophytes are very reduced in size, and are ...
Flowering plants contain microsporangia in the anthers of stamens (typically four microsporangia per anther) and megasporangia inside ovules inside ovaries. In all seed plants, spores are produced by meiosis and develop into gametophytes while still inside the sporangium. The microspores become microgametophytes (pollen).
Other names, such as "thallophytes", "lower plants", and "spore plants" have occasionally been used. As a group, Cryptogamae are paired with the Phanerogamae or Spermatophyta, the seed plants. At one time, the cryptogams were formally recognised as a group within the plant kingdom.
Heterospory evolved due to natural selection that favoured an increase in propagule size compared with the smaller spores of homosporous plants. [2] Heterosporous plants, similar to anisosporic plants [clarification needed], produce two different sized spores in separate sporangia that develop into separate male and female gametophytes.
Conidiogenesis corresponds to Embryology in animals and plants and can be divided into two fundamental forms of development: blastic conidiogenesis, where the spore is already evident before it separates from the conidiogenic hypha, and thallic conidiogenesis, during which a cross-wall forms and the newly created cell develops into a spore. The ...