Search results
Results From The WOW.Com Content Network
Unlike the frequency domain approach, the use of the state-space representation is not limited to systems with linear components and zero initial conditions. The state-space model can be applied in subjects such as economics, [4] statistics, [5] computer science and electrical engineering, [6] and neuroscience. [7]
In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory .
In information technology and computer science, a system is described as stateful if it is designed to remember preceding events or user interactions; [1] the remembered information is called the state of the system. The set of states a system can occupy is known as its state space. In a discrete system, the state space is countable and often ...
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
a model must be produced that captures formally the conceptualization, a simulation must implement this model, and; management must ensure that model and simulation are interconnected and on the current state (which means that normally the model needs to be updated in case the simulation is changed as well).
In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...
A state diagram for a door that can only be opened and closed. A state diagram is used in computer science and related fields to describe the behavior of systems. State diagrams require that the system is composed of a finite number of states. Sometimes, this is indeed the case, while at other times this is a reasonable abstraction.
In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.