Search results
Results From The WOW.Com Content Network
However, he gave one example of a cubic equation: x 3 + 12x = 6x 2 + 35. [16] In the 12th century, another Persian mathematician, Sharaf al-Dīn al-Tūsī (1135–1213), wrote the Al-Muʿādalāt ( Treatise on Equations ), which dealt with eight types of cubic equations with positive solutions and five types of cubic equations which may not ...
Descartes theory of geometric solution of equations uses a parabola to introduce cubic equations, in this way it is possible to set up an equation whose solution is a cube root of two. Note that the parabola itself is not constructible except by three dimensional methods.
Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...
In all, Cardano was driven to the study of thirteen different types of cubic equations (chapters XI–XXIII). In Ars Magna the concept of multiple root appears for the first time (chapter I). The first example that Cardano provides of a polynomial equation with multiple roots is x 3 = 12x + 16, of which −2 is a double root.
Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number). If ...
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.