When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The numerical methods for linear least squares are important because linear regression models are among the most important types of model, both as formal statistical models and for exploration of data-sets. The majority of statistical computer packages contain

  3. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  5. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    The least-squares fit is a common method to fit a straight line through the data. This method minimizes the sum of the squared errors in the data series y {\displaystyle y} . Given a set of points in time t {\displaystyle t} and data values y t {\displaystyle y_{t}} observed for those points in time, values of a ^ {\displaystyle {\hat {a}}} and ...

  6. SmartPLS - Wikipedia

    en.wikipedia.org/wiki/SmartPLS

    [6] [7] The software computes standard results assessment criteria (e.g., for the reflective and formative measurement models and the structural model, including the HTMT criterion, bootstrap based significance testing, PLSpredict, and goodness of fit) [8] and it supports additional statistical analyses (e.g., confirmatory tetrad analysis ...

  7. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    When the data points are equally spaced, an analytical solution to the least-squares equations can be found, in the form of a single set of "convolution coefficients" that can be applied to all data sub-sets, to give estimates of the smoothed signal, (or derivatives of the smoothed signal) at the central point of each sub-set.

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    In mathematics and computing, the Levenberg–Marquardt algorithm (LMA or just LM), also known as the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting .

  9. Line fitting - Wikipedia

    en.wikipedia.org/wiki/Line_fitting

    Line fitting is the process of constructing a straight line that has the best fit to a series of data points. Several methods exist, considering: Vertical distance: Simple linear regression; Resistance to outliers: Robust simple linear regression