When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables. [citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables. [1]

  3. Dummy variable (statistics) - Wikipedia

    en.wikipedia.org/wiki/Dummy_variable_(statistics)

    For example, in econometric time series analysis, dummy variables may be used to indicate the occurrence of wars, or major strikes. It could thus be thought of as a Boolean, i.e., a truth value represented as the numerical value 0 or 1 (as is sometimes done in computer programming). Dummy variables may be extended to more complex cases.

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The goal of logistic regression is to use the dataset to create a predictive model of the outcome variable. As in linear regression, the outcome variables Y i are assumed to depend on the explanatory variables x 1,i... x m,i. Explanatory variables. The explanatory variables may be of any type: real-valued, binary, categorical, etc.

  5. Dummy data - Wikipedia

    en.wikipedia.org/wiki/Dummy_data

    Dummy data can be used as a placeholder for both testing and operational purposes. For testing, dummy data can also be used as stubs or pad to avoid software testing issues by ensuring that all variables and data fields are occupied. In operational use, dummy data may be transmitted for OPSEC purposes. Dummy data must be rigorously evaluated ...

  6. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...

  7. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples. For this section, assume that all of the input features have finite discrete domains, and there is a single target feature called the "classification".

  8. Blinder–Oaxaca decomposition - Wikipedia

    en.wikipedia.org/wiki/Blinder–Oaxaca_decomposition

    Using Blinder–Oaxaca decomposition one can distinguish between "change of mean" contribution (purple) and "change of effect" contribution. The Blinder–Oaxaca decomposition (/ ˈ b l aɪ n d ər w ɑː ˈ h ɑː k ɑː /) or Kitagawa decomposition, is a statistical method that explains the difference in the means of a dependent variable between two groups by decomposing the gap into within ...

  9. Anscombe's quartet - Wikipedia

    en.wikipedia.org/wiki/Anscombe's_quartet

    The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.