Search results
Results From The WOW.Com Content Network
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [11] It consists of RNA polymerase II, a subset of general transcription factors , and regulatory proteins known as SRB proteins.
RNA polymerase then starts to synthesize the initial DNA-RNA heteroduplex, with ribonucleotides base-paired to the template DNA strand according to Watson-Crick base-pairing interactions. As noted above, RNA polymerase makes contacts with the promoter region.
As transcription proceeds, RNA polymerase traverses the template strand and uses base pairing complementarity with the DNA template to create an RNA copy (which elongates during the traversal). Although RNA polymerase traverses the template strand from 3' → 5', the coding (non-template) strand and newly formed RNA can also be used as ...
These two components, RNA polymerase and sigma factor, when paired together, build RNA polymerase holoenzyme which is then in its active form and ready to bind to a promoter and initiate DNA transcription. [9] Once it binds to the DNA, RNA polymerase turns from a closed to an open complex, forming the transcription bubble.
RNA polymerase III (Pol III) transcribes small non-coding RNAs, including tRNAs, 5S rRNA, U6 snRNA, SRP RNA, and other stable short RNAs such as ribonuclease P RNA. [7] Structure of eukaryotic RNA polymerase II (light blue) in complex with α-amanitin (red), a strong poison found in death cap mushrooms that targets this vital enzyme
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [ 1 ] [ 2 ] It consists of RNA polymerase II , a subset of general transcription factors , and regulatory proteins known as SRB proteins [ clarification needed ] .
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
In addition to acetylation patterns of histones, methylation patterns at promoter regions of DNA can regulate RNA polymerase access to a given template. RNA polymerase is often incapable of synthesizing a primary transcript if the targeted gene's promoter region contains specific methylated cytosines— residues that hinder binding of ...