Search results
Results From The WOW.Com Content Network
Modal dispersion occurs even with an ideal, monochromatic light source. A special case of modal dispersion is polarization mode dispersion (PMD), a fiber dispersion phenomenon usually associated with single-mode fibers. PMD results when two modes that normally travel at the same speed due to fiber core geometric and stress symmetry (for example ...
An expression for n as a function of photon energy, symbolically written as n(E), is then determined from the expression for k(E) in accordance to the Kramers–Kronig relations [4] which states that n(E) is the Hilbert transform of k(E). The Forouhi–Bloomer dispersion equations for n(E) and k(E) of amorphous materials are given as:
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis, where modulus is used to describe the variability of failure strength for materials.
Polarization mode dispersion (PMD) is a form of modal dispersion where two different polarizations of light in a waveguide, which normally travel at the same speed, travel at different speeds due to random imperfections and asymmetries, causing random spreading of optical pulses. Unless it is compensated, which is difficult, this ultimately ...
This dispersion limits both the bandwidth and the distance over which the information can be transmitted. This is why for long communications links, it is desirable to use a laser with a very narrow linewidth. Distributed Feedback Lasers (DFB) are popular for communications because they have a single longitudinal mode with a very narrow line width.
In an optical fiber, the material dispersion coefficient, M(λ), characterizes the amount of pulse broadening by material dispersion per unit length of fiber and per unit of spectral width. It is usually expressed in picoseconds per ( nanometre · kilometre ).
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.