Ads
related to: isosceles and equilateral triangles practice quiz
Search results
Results From The WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
The three triangles XBC, YCA, ZAB erected over the sides of the triangle ABC need not be isosceles for the three lines AX, BY, CZ to be concurrent. [ 5 ] If similar triangles XBC , AYC , ABZ are constructed outwardly on the sides of any triangle ABC then the lines AX, BY, CZ are concurrent.
Napoleon's theorem: If the triangles centered on L, M, N are equilateral, then so is the green triangle.. In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle.
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
Isosceles trapezoid; Triangle. Acute and obtuse triangles; Equilateral triangle; Euler's line; Heron's formula; Integer triangle. Heronian triangle; Isosceles triangle; List of triangle inequalities; List of triangle topics; Pedal triangle; Pedoe's inequality; Pythagorean theorem; Pythagorean triangle; Right triangle; Triangle inequality ...
There are several elementary results concerning similar triangles in Euclidean geometry: [9] Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides.
By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral. The area of the Steiner ellipse equals the area of the triangle times 4 π 3 3 , {\displaystyle {\frac {4\pi }{3{\sqrt {3}}}},} and hence is 4 times the ...
Let A'BC be the equilateral triangle having base BC and vertex A' on the negative side of BC and let AB'C and ABC' be similarly constructed equilateral triangles based on the other two sides of triangle ABC. Then the lines AA', BB', CC' are concurrent and the point of concurrence is the 1st isogonal center. Its trilinear coordinates are