When.com Web Search

  1. Ads

    related to: understanding ultrasound physics quizlet

Search results

  1. Results From The WOW.Com Content Network
  2. Medical ultrasound - Wikipedia

    en.wikipedia.org/wiki/Medical_ultrasound

    Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.

  3. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.

  4. Ultrasound energy - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_energy

    Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.

  5. Phased array ultrasonics - Wikipedia

    en.wikipedia.org/wiki/Phased_array_ultrasonics

    By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...

  6. Echogenicity - Wikipedia

    en.wikipedia.org/wiki/Echogenicity

    Echogenicity (sometimes as echogenecity) or echogeneity is the ability to bounce an echo, e.g. return the signal in medical ultrasound examinations. In other words, echogenicity is higher when the surface bouncing the sound echo reflects increased sound waves.

  7. Functional ultrasound imaging - Wikipedia

    en.wikipedia.org/wiki/Functional_Ultrasound_Imaging

    Functional ultrasound imaging (fUS) is a medical ultrasound imaging technique for detecting or measuring changes in neural activities or metabolism, such as brain activity loci, typically through measuring hemodynamic (blood flow) changes.

  8. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    Ultrasound is sound waves with frequencies higher than 20,000 Hz. Ultrasound is not different from audible sound in its physical properties, but cannot be heard by humans. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz. Medical ultrasound is commonly used for diagnostics and treatment.

  9. Particle-size distribution - Wikipedia

    en.wikipedia.org/wiki/Particle-size_distribution

    It turns out that instead of measuring scattered energy versus angle, as with light, in the case of ultrasound, measuring the transmitted energy versus frequency is a better choice. The resulting ultrasound attenuation frequency spectra are the raw data for calculating particle size distribution.