Search results
Results From The WOW.Com Content Network
The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864.
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Core Python Programming is a textbook on the Python programming language, written by Wesley J. Chun. The first edition of the book was released on December 14, 2000. [1] The second edition was released several years later on September 18, 2006. [2] Core Python Programming is mainly targeted at higher education students and IT professionals. [3]
Exponentiation is an arithmetic operation in which a number, known as the base, is raised to the power of another number, known as the exponent. The result of this operation is called the power. Exponentiation is sometimes expressed using the symbol ^ but the more common way is to write the exponent in superscript right after the
A snippet of Python code with keywords highlighted in bold yellow font. The syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some ...
There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent are common. Under the definition as repeated exponentiation, n a {\displaystyle {^{n}a}} means a a ⋅ ⋅ a {\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}} , where n copies of a are iterated via exponentiation, right-to-left, i.e. the application ...
In the language of topology, Euler's formula states that the imaginary exponential function is a morphism of topological groups from the real line to the unit circle . In fact, this exhibits R {\displaystyle \mathbb {R} } as a covering space of S 1 {\displaystyle \mathbb {S} ^{1}} .
In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied.