Search results
Results From The WOW.Com Content Network
If the order in time between certain operations is not determined by the system, then a partial order is used. Examples of such operations are requesting a read operation, reading, writing, aborting, committing, requesting a lock, locking, etc. Often, only a subset of the transaction operation types are included in a schedule.
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
The identity relation = on any set is also a partial order in which every two distinct elements are incomparable. It is also the only relation that is both a partial order and an equivalence relation because it satisfies both the antisymmetry property of partial orders and the symmetry property of equivalence relations. Many advanced properties ...
Total, Semiconnex: Anti-reflexive: Equivalence relation Preorder (Quasiorder) Partial order Total preorder Total order Prewellordering Well-quasi-ordering Well-ordering Lattice Join-semilattice Meet-semilattice Strict partial order Strict weak order Strict total order Symmetric: Antisymmetric: Connected: Well-founded
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
The relation on equivalence classes is a partial order. In mathematics , especially in order theory , a preorder or quasiorder is a binary relation that is reflexive and transitive . The name preorder is meant to suggest that preorders are almost partial orders , but not quite, as they are not necessarily antisymmetric .
A total order is a total preorder which is antisymmetric, in other words, which is also a partial order. Total preorders are sometimes also called preference relations . The complement of a strict weak order is a total preorder, and vice versa, but it seems more natural to relate strict weak orders and total preorders in a way that preserves ...
The theorem is proved in two steps. First, one shows that, if a partial order does not compare some two elements, it can be extended to an order with a superset of comparable pairs. A maximal partial order cannot be extended, by definition, so it follows from this step that a maximal partial order must be a total order. In the second step, Zorn ...