Ad
related to: electromagnetic induction mcq class 12 book 1 succeeded in making a game
Search results
Results From The WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
Low-frequency induction can be a dangerous form of inductive coupling when it happens inadvertently. For example, if a long-distance metal pipeline is installed along a right of way in parallel with a high-voltage power line, the power line can induce current on the pipe. Since the pipe is a conductor, insulated by its protective coating from ...
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
With this pile he passed the electric current through a solution of sulfate of magnesia and succeeded in decomposing the chemical compound (recorded in first letter to Abbott, 12 July 1812). [47] Electromagnetic rotation experiment of Faraday, 1821, the first demonstration of the conversion of electrical energy into motion [48]
[1] [3] The term back electromotive force is also commonly used to refer to the voltage that occurs in electric motors where there is relative motion between the armature and the magnetic field produced by the motor's field coils or permanent magnet field, thus also acting as a generator while running as a motor.
Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.
ECT began largely as a result of the English scientist Michael Faraday's discovery of electromagnetic induction in 1831. Faraday discovered that when there is a closed path through which current can circulate and a time-varying magnetic field passes through a conductor (or vice versa), an electric current flows through this conductor.