Ads
related to: linear actuator how it works free printable coupons
Search results
Results From The WOW.Com Content Network
A traveling-nut linear actuator has a motor that stays attached to one end of the lead screw (perhaps indirectly through a gear box), the motor spins the lead screw, and the lead nut is restrained from spinning so it travels up and down the lead screw. A traveling-screw linear actuator has a lead screw that passes entirely through the motor.
Planetary roller screws are used as the actuating mechanism in many electromechanical linear actuators. Due to its complexity, the roller screw is a relatively expensive actuator (as much as an order of magnitude more expensive than ball screws), but may be suitable for high-precision, high-speed, heavy-load, long-life, and heavy-use applications.
The displacement achieved is commonly linear or rotational, as exemplified by linear motors and rotary motors, respectively. Rotary motion is more natural for small machines making large displacements. By means of a leadscrew, rotary motion can be adapted to function as a linear actuator (which produces a linear motion, but is not a linear motor).
A ball screw (or ballscrew) is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction.
A rigid belt actuator, also known as a push-pull belt actuator or zipper belt actuator, is a specialized mechanical linear actuator used in push-pull and lift applications. The actuator is a belt and pinion device that forms a telescoping beam or column member to transmit traction and thrust. Rigid belt actuators can move dynamic loads up to ...
A rack and pinion has roughly the same purpose as a worm gear with a rack replacing the gear, in that both convert torque to linear force. However the rack and pinion generally provides higher linear speed — since a full turn of the pinion displaces the rack by an amount equal to the pinion's pitch circle whereas a full rotation of the worm screw only displaces the rack by one tooth width.