When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ is a positive rate called the exponential decay constant, disintegration constant, [1] rate constant, [2] or transformation constant: [3]

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206. Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the ...

  4. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    This value is in the denominator of the decay correcting fraction, so it is the same as multiplying the numerator by its inverse (), which is 2.82. (A simple way to check if you are using the decay correct formula right is to put in the value of the half-life in place of "t".

  5. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  7. Particle decay - Wikipedia

    en.wikipedia.org/wiki/Particle_decay

    In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state ) must each be less massive than the original, although the total mass of the system must be conserved.

  8. Branching fraction - Wikipedia

    en.wikipedia.org/wiki/Branching_fraction

    In particle physics and nuclear physics, the branching fraction (or branching ratio) for a decay is the fraction of particles which decay by an individual decay mode or with respect to the total number of particles which decay. It applies to either the radioactive decay of atoms or the decay of elementary particles. [1]

  9. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]