Search results
Results From The WOW.Com Content Network
These are found mixed with fission products in spent nuclear fuel and nuclear fallout. Neutron capture by materials of the nuclear reactor (shielding, cladding, etc.) or the environment (seawater, soil, etc.) produces activation products (not listed here). These are found in used nuclear reactors and nuclear fallout.
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. [1] A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons (i.e., a thermal system) or fast neutrons.
Nuclear fuel process A graph comparing nucleon number against binding energy Close-up of a replica of the core of the research reactor at the Institut Laue-Langevin. Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
Phase diagram of UF 6. As one of the most volatile compounds of uranium, uranium hexafluoride is relatively convenient to process and is used in both of the main uranium enrichment methods, namely gaseous diffusion and the gas centrifuge method.
It is also more difficult to produce material suitable for nuclear weapons from the thorium fuel cycle compared to the uranium fuel cycle. Some proposed designs for thorium-fueled nuclear reactors include the molten salt reactor and a fast neutron reactor, among others. Although thorium-based nuclear reactors have been proposed since the 1960s ...
In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Recovering uranium and plutonium from spent nuclear fuel for reuse is one of the major processes of the nuclear fuel cycle. As it has a long half-life of just over 2 million years, the alpha emitter 237 Np is one of the major isotopes of the minor actinides separated from spent nuclear fuel. [ 82 ]