When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.

  3. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    The EFL is the distance from the rear nodal point to the rear focal point. The power of a lens is equal to 1/EFL or n ′ /f ′. For collimated light, a lens could be placed in air at the second nodal point of an optical system to give the same paraxial properties as an original lens system with an image in fluid.

  4. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    A real image occurs at points where rays actually converge, whereas a virtual image occurs at points that rays appear to be diverging from. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object ...

  5. Virtual image - Wikipedia

    en.wikipedia.org/wiki/Virtual_image

    A converging lens (one that is thicker in the middle than at the edges) or a convex mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image.

  6. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    Conversely, a point source of light placed at the focal point is converted into a collimated beam by the lens. These two cases are examples of image formation in lenses. In the former case, an object at an infinite distance (as represented by a collimated beam of waves) is focused to an image at the focal point of the lens.

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    This is the lens's front focal point. Rays from an object at a finite distance are associated with a virtual image that is closer to the lens than the focal point, and on the same side of the lens as the object. The closer the object is to the lens, the closer the virtual image is to the lens.

  8. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    Incoming parallel rays are focused by a convex lens into an inverted real image one focal length from the lens, on the far side of the lens. Rays from an object at finite distance are focused further from the lens than the focal distance; the closer the object is to the lens, the further the image is from the lens.

  9. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    A convex lens or concave mirror will cause parallel rays to focus, converging toward a point. Beyond that focal point, the rays diverge. Conversely, a concave lens or convex mirror will cause parallel rays to diverge. Light does not actually consist of imaginary rays and light sources are not single-point sources, thus vergence is typically ...