When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thomson scattering - Wikipedia

    en.wikipedia.org/wiki/Thomson_scattering

    Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering : the particle's kinetic energy and photon frequency do not change as a result of the scattering. [ 1 ]

  3. Classical electron radius - Wikipedia

    en.wikipedia.org/wiki/Classical_electron_radius

    The classical electron radius appears in the classical limit of modern theories as well, including non-relativistic Thomson scattering and the relativistic Klein–Nishina formula. Also, is roughly the length scale at which renormalization becomes important in quantum electrodynamics. That is, at short-enough distances, quantum fluctuations ...

  4. Klein–Nishina formula - Wikipedia

    en.wikipedia.org/wiki/Klein–Nishina_formula

    In some cases it is convenient to express the classical electron radius in terms of the Compton wavelength: = ¯ = /, where is the fine structure constant (~1/137) and ¯ = / is the reduced Compton wavelength of the electron (~0.386 pm), so that the constant in the cross section may be given as:

  5. Electron scattering - Wikipedia

    en.wikipedia.org/wiki/Electron_scattering

    Thomson scattering is the classical elastic quantitative interpretation of the scattering process, [26] and this can be seen to happen with lower, mid-energy, photons. The classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength.

  6. X-ray reflectivity - Wikipedia

    en.wikipedia.org/wiki/X-ray_reflectivity

    Here ′ = is the wavevector inside the material, = ⁡ / and the critical angle /, with the Thomson scattering length. Below the critical angle Q < Q c {\displaystyle Q<Q_{c}} (derived from Snell's law ), 100% of incident radiation is reflected through total external reflection , R = 1 {\displaystyle R=1} .

  7. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant , expressed in units of energy per temperature increment per amount of substance , rather than energy per temperature increment per particle .

  8. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).

  9. Scattering length - Wikipedia

    en.wikipedia.org/wiki/Scattering_length

    The scattering length in quantum mechanics describes low-energy scattering. For potentials that decay faster than 1 / r 3 {\displaystyle 1/r^{3}} as r → ∞ {\displaystyle r\to \infty } , it is defined as the following low-energy limit :