Search results
Results From The WOW.Com Content Network
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
Wall Footing . A wall footing or strip footing is a continuous strip of concrete that serves to spread the weight of a load-bearing wall across an area of soil. [1] It is a component of a shallow foundation. [1] Wall Footing. Wall footings carrying direct vertical loads might be designed either in plain concrete or in reinforced concrete.
A load case is a combination of different types of loads with safety factors applied to them. A structure is checked for strength and serviceability against all the load cases it is likely to experience during its lifetime. Typical load cases for design for strength (ultimate load cases; ULS) are: 1.2 x Dead Load + 1.6 x Live Load
A grade beam or grade beam footing is a component of a building's foundation. It consists of a reinforced concrete beam that transmits the load from a bearing wall into spaced foundations such as pile caps or caissons. [1] It is used in conditions where the surface soil's load-bearing capacity is less than the anticipated design loads.
A strap footing is a component of a building's foundation. It is a type of combined footing, [1] consisting of two or more column footings connected by a concrete beam. This type of beam is called a strap beam. It is used to help distribute the weight of either heavily or eccentrically loaded column footings to adjacent footings. [2]
A combined footing is typically utilized when the spacing of the columns is too restricted such that if isolated footing were used, they would overlap one another. Also, when property lines make isolated footings eccentrically loaded, combined footings are preferred. When the load among the columns is equal, the combined footing may be rectangular.
In Australia, these steel sections are commonly referred to as Universal Beams (UB) or Columns (UC). The designation for each is given as the approximate height of the beam, the type (beam or column) and then the unit metre rate (e.g., a 460UB67.1 is an approximately 460 mm (18.1 in) deep universal beam that weighs 67.1 kg/m (135 lb/yd)). [6]
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.