Ads
related to: fourier transformation examples geometry
Search results
Results From The WOW.Com Content Network
An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.
Fast Fourier transform, a popular implementation of the DFT; Discrete cosine transform. ... Affine transformation (Euclidean geometry) Bäcklund transform;
Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).
An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).
For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies, which are assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform based on this reduced number ...
For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision , and weak components are eliminated, so that the remaining components can be stored very compactly.
The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.