Search results
Results From The WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
At about the same time, Makarov, [6] and independently, Rüschendorf [7] solved the problem, originally posed by Kolmogorov, of how to find the upper and lower bounds for the probability distribution of a sum of random variables whose marginal distributions, but not their joint distribution, are known.
Let X 1 be dosage "level" and X 2 be the blocking factor furnace run. Then the experiment can be described as follows: k = 2 factors (1 primary factor X 1 and 1 blocking factor X 2) L 1 = 4 levels of factor X 1 L 2 = 3 levels of factor X 2 n = 1 replication per cell N = L 1 * L 2 = 4 * 3 = 12 runs. Before randomization, the design trials look like:
Decision boundaries can be approximations of optimal stopping boundaries. [ 2 ] The decision boundary is the set of points of that hyperplane that pass through zero. [ 3 ] For example, the angle between a vector and points in a set must be zero for points that are on or close to the decision boundary.
P( at least one estimation is bad) = 0.05 ≤ P( A 1 is bad) + P( A 2 is bad) + P( A 3 is bad) + P( A 4 is bad) + P( A 5 is bad) One way is to make each of them equal to 0.05/5 = 0.01, that is 1%. In other words, you have to guarantee each estimate good to 99%( for example, by constructing a 99% confidence interval) to make sure the total ...
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.