Search results
Results From The WOW.Com Content Network
The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
The curves were calculated using the formulas provided above, based on the specific values presented in the table for specimen shape effect calculations. For the curves where end restraint is applied to the specimens, they are assumed to be fully laterally restrained, meaning that the coefficient of friction at the contact points between the ...
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...
Mechanical load is the physical stress on a mechanical system or component [1] leading to strain. Loads can be static or dynamic. Some loads are specified as part of the design criteria of a mechanical system. Depending on the usage, some mechanical loads can be measured by an appropriate test method in a laboratory or in the field.
The diversified load is the total expected power, or "load", to be drawn during a peak period by a device or system of devices. The maximum system load is the combination of each device's full load capacity, utilization factor, diversity factor, demand factor, and the load factor. This process is referred to as load diversification.
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.
The LLF value naturally depends on the load profile. For electricity utilities , numbers about 0.2-0.3 are typical (cf. 0.22 for Toronto Hydro , [ 3 ] 0.33 for New Zealand [ 4 ] ). Multiple empirical formulae exist that relate the loss factor to the load factor (Dickert et al. in 2009 listed nine [ 5 ] ).