Ads
related to: differential equations and its applications
Search results
Results From The WOW.Com Content Network
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
Differential equations arise naturally in the physical sciences, in mathematical modelling, and within mathematics itself. For example, Newton's second law , which describes the relationship between acceleration and force, can be stated as the ordinary differential equation
These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.
Continuous group theory, Lie algebras, and differential geometry are used to understand the structure of linear and non-linear (partial) differential equations for generating integrable equations, to find its Lax pairs, recursion operators, Bäcklund transform, and finally finding exact analytic solutions to DE.
Differential equations are an important area of mathematical analysis with many applications in science and engineering. Analysis is the branch of mathematics dealing with continuous functions , limits , and related theories, such as differentiation , integration , measure , infinite sequences , series , and analytic functions .
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.
The highest order of derivation that appears in a (linear) differential equation is the order of the equation. The term b(x), which does not depend on the unknown function and its derivatives, is sometimes called the constant term of the equation (by analogy with algebraic equations), even when this term is a non-constant function.