When.com Web Search

  1. Ad

    related to: probabilistic machine learning pdf download free

Search results

  1. Results From The WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. It can be used for Bayesian statistical modeling and probabilistic machine learning.

  3. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [19]Probabilistic numerics have also been studied for mathematical optimization, which consist of finding the minimum or maximum of some objective function given (possibly noisy or indirect) evaluations of that function at a set of points.

  4. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to.

  5. Probabilistic soft logic - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_soft_logic

    Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains. [ 2 ] It is applicable to a variety of machine learning problems, such as collective classification , entity resolution , link prediction , and ontology alignment .

  6. Probabilistic neural network - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_neural_network

    A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems. In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.

  7. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  8. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    Probabilistic graphical models form a large class of structured prediction models. In particular, Bayesian networks and random fields are popular. Other algorithms and models for structured prediction include inductive logic programming , case-based reasoning , structured SVMs , Markov logic networks , Probabilistic Soft Logic , and constrained ...

  9. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol.