When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.

  3. Electrons and Holes in Semiconductors with Applications to ...

    en.wikipedia.org/wiki/Electrons_and_Holes_in...

    First edition. Electrons and Holes in Semiconductors with Applications to Transistor Electronics is a book by Nobel Prize winner William Shockley, [1] first published in 1950. . It was a primary source, and was used as the first textbook, for scientists and engineers learning the new field of semiconductors as applied to the development of the transis

  4. Electron hole - Wikipedia

    en.wikipedia.org/wiki/Electron_hole

    When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.

  5. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.

  6. Charge carrier - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier

    The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current.

  7. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...

  8. Shubnikov–de Haas effect - Wikipedia

    en.wikipedia.org/wiki/Shubnikov–de_Haas_effect

    Each energy level is substantially flat inside a sample (see Fig 1). At the edges of a sample, the work function bends levels upwards. Fig 1: Edge channels of a sample with a two-dimensional electron gas. Fig 1 shows the Fermi energy E F located in between [1] two Landau levels. Electrons become mobile as their energy levels cross the Fermi ...

  9. Hall effect - Wikipedia

    en.wikipedia.org/wiki/Hall_effect

    But consider the same magnetic field and current are applied but the current is carried inside the Hall effect device by a positive particle. The particle would of course have to be moving in the opposite direction of the electron in order for the current to be the same—down in the diagram, not up like the electron is.

  1. Related searches electron and hole current and magnetic energy transfer worksheet pdf book

    electron hole chartsemiconductor electron hole
    what is an electron holeelectron holes in metals