Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The Dess–Martin oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones using Dess–Martin periodinane. [1] [2] It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the periodinane reagent in 1983.
In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol (−OH) is oxidized to an aldehyde (−CH=O) or ketone (>C=O) using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine.
The reaction mechanism of Corey–Kim oxidation. Under Corey–Kim conditions allylic and benzylic alcohols have a tendency to evolve to the corresponding allyl and benzyl chlorides unless the alcohol activation is very quickly followed by addition of triethylamine. In fact, Corey–Kim conditions —with no addition of triethylamine— are ...
The reaction stoichiometry implicates the Cr(IV) species "CrO 2 OH −", which comproportionates with the chromic acid to give a Cr(V) oxide, which also functions as an oxidant for the alcohol. [ 6 ] The oxidation of the aldehydes is proposed to proceed via the formation of hemiacetal -like intermediates, which arise from the addition of the O ...
The Collins oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes. It is distinguished from other chromium oxide-based oxidations by the use of Collins reagent, a complex of chromium(VI) oxide with pyridine in dichloromethane. [1] [2] Mechanism of the Collins oxidation [3]
Another side reaction is the Tischenko reaction of aldehyde products with no α-hydrogen, but this can be prevented by use of anhydrous solvents. [4] Another general side reaction is the migration of the double bond during the oxidation of allylic alcohol substrates. [14] Oppenauer oxidation of a steroid derivative. [15]
The reaction cogenerates dimethyl sulfide and a urea. Dicyclohexylurea ((CyNH) 2 CO) can be difficult to remove from the product. In terms of mechanism, the reaction is proposed to involve the intermediary of an sulfonium group, formed by a reaction between DMSO and the carbodiimide. This species is highly reactive and is attacked by the alcohol.