Search results
Results From The WOW.Com Content Network
Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an object is in an elliptical orbit, the tidal forces acting on it are stronger near periapsis than near ...
Tidal heating of Io (also known as tidal working) occurs through the tidal friction processes between Jupiter and its moon. Orbital and rotational energy are dissipated as heat in the crust of the moon. Io has a similar mass and size as the Moon, but Io is the most geologically active body in the Solar System. This is caused by the heating ...
The fundamental solar diurnal tidal mode which optimally matches the solar heat input configuration and thus is most strongly excited is the Hough mode (1, −2) (Figure 3). It depends on local time and travels westward with the Sun. It is an external mode of class 2 and has the eigenvalue of ε 1 −2 = −12.56.
High and low tide in the Bay of Fundy. The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).
This is known as tidal heating, and it helps keep the interior in a liquid state. A liquid interior that can conduct electricity is required to produce a dynamo. Saturn's Enceladus and Jupiter's Io have enough tidal heating to liquify their inner cores, but they may not create a dynamo because they cannot conduct electricity.
Figure 1: Tidal interaction between the spiral galaxy NGC 169 and a smaller companion [1]. The tidal force or tide-generating force is a gravitational effect that stretches a body along the line towards and away from the center of mass of another body due to spatial variations in strength in gravitational field from the other body.
Internal heat is the heat source from the interior of celestial objects, such as stars, brown dwarfs, planets, moons, dwarf planets, and (in the early history of the Solar System) even asteroids such as Vesta, resulting from contraction caused by gravity (the Kelvin–Helmholtz mechanism), nuclear fusion, tidal heating, core solidification (heat of fusion released as molten core material ...
Volcanism on outer solar system moons is powered mainly by tidal heating. [1] Tidal heating caused by the deformation of a body's shape due to mutual gravitational attraction, which generates heat. Earth experiences tidal heating from the Moon, deforming by up to 1 metre (3 feet), but this does not make up a major portion of Earth's total heat. [4]