When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear dynamical system - Wikipedia

    en.wikipedia.org/wiki/Linear_dynamical_system

    Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...

  3. List of dynamical systems and differential equations topics

    en.wikipedia.org/wiki/List_of_dynamical_systems...

    Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...

  4. Dynamical systems theory - Wikipedia

    en.wikipedia.org/wiki/Dynamical_systems_theory

    Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...

  5. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    In the new coordinate system, the origin is a fixed point of the map and the solutions are of the linear system A n x 0. The solutions for the map are no longer curves, but points that hop in the phase space. The orbits are organized in curves, or fibers, which are collections of points that map into themselves under the action of the map.

  6. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  7. Linear flow on the torus - Wikipedia

    en.wikipedia.org/wiki/Linear_flow_on_the_torus

    Irrational windings of a torus may be used to set up counter-examples related to monomorphisms.An irrational winding is an immersed submanifold but not a regular submanifold of the torus, which shows that the image of a manifold under a continuous injection to another manifold is not necessarily a (regular) submanifold. [2]

  8. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic...

    LQG control applies to both linear time-invariant systems as well as linear time-varying systems, and constitutes a linear dynamic feedback control law that is easily computed and implemented: the LQG controller itself is a dynamic system like the system it controls. Both systems have the same state dimension.

  9. Phase portrait - Wikipedia

    en.wikipedia.org/wiki/Phase_portrait

    In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.