When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear dynamical system - Wikipedia

    en.wikipedia.org/wiki/Linear_dynamical_system

    Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  4. Linear parameter-varying control - Wikipedia

    en.wikipedia.org/wiki/Linear_parameter-varying...

    In designing feedback controllers for dynamical systems a variety of modern, multivariable controllers are used. In general, these controllers are often designed at various operating points using linearized models of the system dynamics and are scheduled as a function of a parameter or parameters for operation at intermediate conditions.

  5. Poincaré recurrence theorem - Wikipedia

    en.wikipedia.org/wiki/Poincaré_recurrence_theorem

    The result applies to isolated mechanical systems subject to some constraints, e.g., all particles must be bound to a finite volume. The theorem is commonly discussed in the context of ergodic theory, dynamical systems and statistical mechanics. Systems to which the Poincaré recurrence theorem applies are called conservative systems.

  6. Conley's fundamental theorem of dynamical systems - Wikipedia

    en.wikipedia.org/wiki/Conley's_fundamental...

    Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.

  7. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...

  8. Measure-preserving dynamical system - Wikipedia

    en.wikipedia.org/wiki/Measure-preserving...

    This system does exhibit one key idea from the classification of measure-preserving dynamical systems: two ensembles, having different temperatures, are inequivalent. The entropy for a given canonical ensemble depends on its temperature; as physical systems, it is "obvious" that when the temperatures differ, so do the systems.

  9. Recurrent point - Wikipedia

    en.wikipedia.org/wiki/Recurrent_point

    Its closure is called the Birkhoff center of , [2] and appears in the work of George David Birkhoff on dynamical systems. [3] [4] Every recurrent point is a nonwandering point, [1] hence if is a homeomorphism and is compact, then () is an invariant subset of the non-wandering set of (and may be a proper subset).