Search results
Results From The WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
This is also known as the vertex 1-center problem and can be extended to the vertex k-center problem. Finding the center of a graph is useful in facility location problems where the goal is to minimize the worst-case distance to the facility. For example, placing a hospital at a central point reduces the longest distance the ambulance has to ...
A vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. This vertex figure has a 3-dimensional structure since the faces are not in the same plane for polyhedra, but for vertex-uniform polyhedra all the neighboring vertices are in the same plane and so this plane projection can be used to visually represent the vertex configuration.
For instance, in the octahedron graph, shown in the figure, each vertex has a neighbourhood isomorphic to a cycle of four vertices, so the octahedron is locally C 4. For example: Any complete graph K n is locally K n-1. The only graphs that are locally complete are disjoint unions of complete graphs. A Turán graph T(rs,r) is locally T((r-1)s,r ...
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding ...
In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]
A peripheral vertex in a graph of diameter d is one whose eccentricity is d —that is, a vertex whose distance from its furthest vertex is equal to the diameter. Formally, v is peripheral if ϵ(v) = d. A pseudo-peripheral vertex v has the property that, for any vertex u, if u is as far away from v as possible, then v is as far away from u as
The vertex space of G is the vector space over the finite field of two elements /:= {,} of all functions /. Every element of V ( G ) {\displaystyle {\mathcal {V}}(G)} naturally corresponds the subset of V which assigns a 1 to its vertices.