Ads
related to: robotic motion planning course 4 video download
Search results
Results From The WOW.Com Content Network
Robotics engineering is a branch of engineering that focuses on the conception, design, manufacturing, and operation of robots. It involves a multidisciplinary approach, drawing primarily from mechanical , electrical , software , and artificial intelligence (AI) engineering .
Motion planning algorithms might address robots with a larger number of joints (e.g., industrial manipulators), more complex tasks (e.g. manipulation of objects), different constraints (e.g., a car that can only drive forward), and uncertainty (e.g. imperfect models of the environment or robot). Motion planning has several robotics applications ...
Flessas started studying robotics in the mid-1990's. [5] He trained at ABB's robotic training school. [6] He also trained at KUKA training institute. He has a BA degree in Film Animation from Columbia College Chicago 1991. Flessas designs advanced robotics motion planning software systems and proprietary hardware for ABB, KUKA, and YASKAWA robots.
Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.
The probabilistic roadmap [1] planner is a motion planning algorithm in robotics, which solves the problem of determining a path between a starting configuration of the robot and a goal configuration while avoiding collisions. An example of a probabilistic random map algorithm exploring feasible paths around a number of polygonal obstacles
The following outline is provided as an overview of and topical guide to robotics: . Robotics is a branch of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing.
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [1] [2] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation.
A manipulator can move an object with up to 6 degrees of freedom (DoF), determined by 3 translation 3T and 3 rotation 3R coordinates for full 3T3R mobility. However, when a manipulation task requires less than 6 DoF, the use of lower mobility manipulators, with fewer than 6 DoF, may bring advantages in terms of simpler architecture, easier control, faster motion and lower cost. [2]
Ad
related to: robotic motion planning course 4 video download