Search results
Results From The WOW.Com Content Network
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
A key simplifying assumption Gurney made was that there is a linear velocity gradient in the explosive detonation product gases; in situations where this is strongly violated, such as implosions, the accuracy of the equations is low.
The van Deemter equation is a hyperbolic function that predicts that there is an optimum velocity at which there will be the minimum variance per unit column length and, thence, a maximum efficiency. The van Deemter equation was the result of the first application of rate theory to the chromatography elution process.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Flow velocity vector field : u = (,) m s −1 [L][T] −1 Velocity pseudovector field : ω = s −1 [T] −1 ...
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):
An example of a velocity triangle drawn for the inlet of a turbomachine. The "1" subscript denotes the high pressure side (inlet in case of turbines and outlet in case of pumps/compressors). A general velocity triangle consists of the following vectors: [1] [2] V = absolute velocity of the fluid. U = blade linear velocity.
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.