Search results
Results From The WOW.Com Content Network
Usually, chord length and height are given or measured, and sometimes the arc length as part of the perimeter, and the unknowns are area and sometimes arc length. These can't be calculated simply from chord length and height, so two intermediate quantities, the radius and central angle are usually calculated first.
Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.
When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
The radius of such a curve is 5729.57795. If the chord definition is used, each 100-unit chord length will sweep 1 degree with a radius of 5729.651 units, and the chord of the whole curve will be slightly shorter than 600 units.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.