When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.

  3. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .

  4. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography. This is usually done with Bézier curves , which are a simple generalization of interpolation polynomials (having specified tangents as well as specified points).

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs ( x j , y j ) {\displaystyle (x_{j},y_{j})} with 0 ≤ j ≤ k , {\displaystyle 0\leq j\leq k,} the x j {\displaystyle x_{j}} are called nodes and the y j ...

  8. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation.Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.

  9. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...