Search results
Results From The WOW.Com Content Network
For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa ...
A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the five-term row 1 4 6 4 1 . The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one.
Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801.. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers.
Using this fundamental formula and Euler's criterion we find that = = () Therefore () Using the binomial theorem, we also find that = (), If we let a be a multiplicative inverse of (), then we can rewrite this sum as () = using the substitution =, which doesn't affect the range of the sum.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
This holds whether or not the numbers are integers; there is a formula (see here) that generates all integer cases. [ 5 ] [ 6 ] Second, also in a right triangle the sum of the squared reciprocal of the side of one of the two inscribed squares and the squared reciprocal of the hypotenuse equals the squared reciprocal of the side of the other ...
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
This reflection operation turns the gradient of any line into its reciprocal. [ 1 ] Assuming that f {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} and have a derivative given by the above formula.