Search results
Results From The WOW.Com Content Network
The full moon is highest in the sky during winter and lowest during summer (for each hemisphere respectively), with its altitude changing towards dark moon to the opposite. At the North and South Poles the Moon is 24 hours above the horizon for two weeks every tropical month (about 27.3 days), comparable to the polar day of the tropical year.
The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system ...
The Moon's elongation is its angular distance east of the Sun at any time. At new moon, it is zero and the Moon is said to be in conjunction. At full moon, the elongation is 180° and it is said to be in opposition. In both cases, the Moon is in syzygy, that is, the Sun, Moon and Earth are nearly aligned.
The lunar distance is the angle between the Moon and a star (or the Sun). In the above illustration the star Regulus is used. The altitudes of the two bodies are used to make corrections and determine the time. In celestial navigation, lunar distance, also called a lunar, is the angular distance between the Moon and another celestial body.
A diagram of a typical nautical sextant, a tool used in celestial navigation to measure the angle between two objects viewed by means of its optical sight. Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the ...
This works out to an altitude of 35,786 km (22,236 mi). Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). High Earth orbit: geocentric orbits above the altitude of geosynchronous orbit (35,786 km or 22,236 mi). [8]
At this location the selenographic colongitude at sunrise is defined as 0°. Thus, by the time of the Full Moon the colongitude increases to 90°; at Last Quarter it is 180°, and at the New Moon the colongitude reaches 270°. Note that the Moon is nearly invisible from the Earth at New Moon phase except during a solar eclipse.
Azimuth is measured eastward from the north point (sometimes from the south point) of the horizon; altitude is the angle above the horizon. The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.