When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan form is used to find a normal form of matrices up to conjugacy such that normal matrices make up an algebraic variety of a low fixed degree in the ambient matrix space. Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ...

  3. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix. [2]

  4. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    5.4.2 Using the Jordan canonical form. ... Since the series has a finite number of steps, ... Let us first calculate exp(J).

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The set of matrices of the form A − λB, where λ is a complex number, is called a pencil; the term matrix pencil can also refer to the pair (A, B) of matrices. [ 14 ] If B is invertible, then the original problem can be written in the form B − 1 A v = λ v {\displaystyle \mathbf {B} ^{-1}\mathbf {A} \mathbf {v} =\lambda \mathbf {v} } which ...

  6. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  7. Modal matrix - Wikipedia

    en.wikipedia.org/wiki/Modal_matrix

    A generalized modal matrix for is an n × n matrix whose columns, considered as vectors, form a canonical basis for and appear in according to the following rules: All Jordan chains consisting of one vector (that is, one vector in length) appear in the first columns of M {\displaystyle M} .

  8. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The Jordan normal form and the Jordan–Chevalley decomposition. Applicable to: square matrix A; Comment: the Jordan normal form generalizes the eigendecomposition to cases where there are repeated eigenvalues and cannot be diagonalized, the Jordan–Chevalley decomposition does this without choosing a basis.