Ads
related to: weighted mean calculator for survey questionnaire sample
Search results
Results From The WOW.Com Content Network
The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.
It can produce a weighted mean that has less variability than the arithmetic mean of a simple random sample of the population. In computational statistics , stratified sampling is a method of variance reduction when Monte Carlo methods are used to estimate population statistics from a known population.
In survey research, the design effect is a number that shows how well a sample of people may represent a larger group of people for a specific measure of interest (such as the mean). This is important when the sample comes from a sampling method that is different than just picking people using a simple random sample .
In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.
In statistics, a weighted median of a sample is the 50% weighted percentile. [1] [2] [3] It was first proposed by F. Y. Edgeworth in 1888. [4] [5] Like the median, it is useful as an estimator of central tendency, robust against outliers. It allows for non-uniform statistical weights related to, e.g., varying precision measurements in the sample.
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.
The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.
where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible.
Ad
related to: weighted mean calculator for survey questionnaire samplequaltrics.com has been visited by 10K+ users in the past month