Search results
Results From The WOW.Com Content Network
An interesting property of the upper box dimension not shared with either the lower box dimension or the Hausdorff dimension is the connection to set addition. If A and B are two sets in a Euclidean space, then A + B is formed by taking all the pairs of points a , b where a is from A and b is from B and adding a + b .
In particular, the m-dimensional Minkowski content in R n is not a measure unless m = 0, in which case it is the counting measure. Indeed, clearly the Minkowski content assigns the same value to the set A as well as its closure. If A is a closed m-rectifiable set in R n, given as the image of a bounded set from R m under a Lipschitz function ...
The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. [3] Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.
In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces.Let be a measure space, let < and let and be elements of (). Then + is in (), and we have the triangle inequality
Let = [,] denote the unit interval. Note that the box-counting dimension and the Minkowski dimension coincide with a common value of 1; i.e. = = Now observe that (,) = ⌊ / ⌋ +, where ⌊ ⌋ denotes the integer part of .
For any -dimensional polytope, one can specify its collection of facet directions and measures by a finite set of -dimensional nonzero vectors, one per facet, pointing perpendicularly outward from the facet, with length equal to the ()-dimensional measure of its facet. [3]
A probability measure is a finite measure, and the Shapley–Folkman lemma has applications in non-probabilistic measure theory, such as the theories of volume and of vector measures. The Shapley–Folkman lemma enables a refinement of the Brunn–Minkowski inequality , which bounds the volume of sums in terms of the volumes of their summand ...
If is a subset of a real or complex vector space, then the Minkowski functional or gauge of is defined to be the function: [,], valued in the extended real numbers, defined by ():= {: >}, where the infimum of the empty set is defined to be positive infinity (which is not a real number so that () would then not be real-valued).