Search results
Results From The WOW.Com Content Network
A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of primates, the front flippers of whales, and the forelegs of four-legged vertebrates like horses and crocodilians are all derived from the same ancestral tetrapod structure.
The structure of immunoglobulin G-binding bacterial proteins A and H do not contain any sequences homologous to the constant repeats of IgG antibodies, but they have similar functions. Both protein G, A, H are inhibited in the interactions with IgG antibodies (IgGFc) by a synthetic peptide corresponding to an 11-amino-acid-long sequence in the ...
The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous , whereas homologous structures or traits have a common origin but can have dissimilar functions.
For example, just by position one can identify species, albeit to a much lesser extent. Though most insects fold their wings when at rest, dragonflies and some damselflies rest with their wings spread out horizontally, while groups such as the caddisflies , stoneflies , alderflies , and lacewings hold their wings sloped roof-like over their backs.
Earwig wing anatomy. One tegmen opened, the other removed to show wing folding mechanism. The term tegmen refers to a miscellaneous and arbitrary group of organs in various orders of insects; they certainly are homologous in the sense that they all are derived from insect forewings, but in other senses they are analogous; for example, the evolutionary development of the short elytra of the ...
These rudimentary structures are often homologous to structures that correspond in related or ancestral species. A wide range of structures exist such as mutated and non-functioning genes, parts of a flower, muscles, organs, and even behaviors. This variety can be found across many different groups of species.
An interesting observation made by some of these physicians was the presence of homologous structures in a wide variety of animals, even including humans. These observations were later used by Darwin as he formed his theory of Natural Selection. [8] Edward Tyson is regarded as the founder of modern comparative anatomy.
For example, Hox genes in insects specify which appendages form on a segment (for example, legs, antennae, and wings in fruit flies), and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.