When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The cross-section of the column is uniform throughout its length. The direct stress is very small as compared to the bending stress (the material is compressed only within the elastic range of strains). The length of the column is very large as compared to the cross-sectional dimensions of the column. The column fails only by buckling.

  3. Help:Advanced table formatting - Wikipedia

    en.wikipedia.org/wiki/Help:Advanced_table_formatting

    Solution: divide one of the tall cells so that the row gets one rowspan=1 cell (and don't mind the eventual loss of text-centering). Then kill the border between them. Don't forget to fill the cell with nothing ({}). This being the only solution that correctly preserves the cell height, matching that of the reference seven row table.

  4. Column - Wikipedia

    en.wikipedia.org/wiki/Column

    The design of most classical columns incorporates entasis (the inclusion of a slight outward curve in the sides) plus a reduction in diameter along the height of the column, so that the top is as little as 83% of the bottom diameter. This reduction mimics the parallax effects which the eye expects to see, and tends to make columns look taller ...

  5. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    The slenderness ratio is an indicator of the specimen's resistance to bending and buckling, due to its length and cross section. If the slenderness ratio is less than the critical slenderness ratio, the column is considered to be a short column. In these cases, the Johnson parabola is more applicable than the Euler formula. [5]

  6. Perry–Robertson formula - Wikipedia

    en.wikipedia.org/wiki/Perry–Robertson_formula

    The Perry–Robertson formula is a mathematical formula which is able to produce a good approximation of buckling loads in long slender columns or struts, and is the basis for the buckling formulation adopted in EN 1993. The formula in question can be expressed in the following form:

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  8. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    In Australia, these steel sections are commonly referred to as Universal Beams (UB) or Columns (UC). The designation for each is given as the approximate height of the beam, the type (beam or column) and then the unit metre rate (e.g., a 460UB67.1 is an approximately 460 mm (18.1 in) deep universal beam that weighs 67.1 kg/m (135 lb/yd)). [6]

  9. Slenderness ratio - Wikipedia

    en.wikipedia.org/wiki/Slenderness_ratio

    The effective length is calculated from the actual length of the member considering the rotational and relative translational boundary conditions at the ends. Slenderness captures the influence on buckling of all the geometric aspects of the column, namely its length, area, and second moment of area .