Ad
related to: depolarizing vs hyperpolarizing left renal artery
Search results
Results From The WOW.Com Content Network
Due to the anatomical position of the aorta, the inferior vena cava, and the kidneys, the right renal artery is normally longer than the left renal artery. [1] [6] The right passes behind the inferior vena cava, the right renal vein, the head of the pancreas, and the descending part of the duodenum. It’s somewhat lower than the left one.
By hyperpolarizing a neuron, an inhibitory stimulus results in a greater negative charge that must be overcome for depolarization to occur. Excitation stimuli, on the other hand, increase the voltage in the neuron, which leads to a neuron that is easier to depolarize than the same neuron in the resting state.
The renal circulation supplies the blood to the kidneys via the renal arteries, left and right, which branch directly from the abdominal aorta. Despite their relatively small size, the kidneys receive approximately 20% of the cardiac output .
When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...
Diagram of membrane potential changes during an action potential. Hyperpolarization is a change in a cell's membrane potential that makes it more negative. Cells typically have a negative resting potential, with neuronal action potentials depolarizing the membrane.
The procedure involves endovascular access via the femoral artery with advancement of a catheter-mounted device into the renal artery. The device uses radiofrequency or ultrasound to ablate the renal nerves. Typically, numerous ablations are applied at a different longitudinal and rotational positions to ensure maximal denervation. [13]
Applying spectral Doppler to the renal artery and selected interlobular arteries, peak systolic velocities, resistive index, and acceleration curves can be estimated (Figure 4) (e.g., peak systolic velocity of the renal artery above 180 cm/s is a predictor of renal artery stenosis of more than 60%, and a resistive index, which is a calculated ...
Renal physiology (Latin renes, "kidneys") is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid ...