When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline. Note that energy can be exchanged with the flow in an isentropic transformation, as long as it doesn't happen as heat exchange. An example of such an exchange would be an isentropic expansion or ...

  4. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of p = 7.0 MPa and exit the rocket exhaust at an absolute pressure of p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor of γ = 1.22 and a molar mass of M ...

  5. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    The gas flow through a de Laval nozzle is isentropic (gas entropy is nearly constant). In a subsonic flow, sound will propagate through the gas. At the "throat", where the cross-sectional area is at its minimum, the gas velocity locally becomes sonic (Mach number = 1.0), a condition called choked flow.

  6. Template:Non-free NASA - Wikipedia

    en.wikipedia.org/wiki/Template:Non-free_NASA

    This is a file created by NASA with a copyright notice. NASA copyright policy states that "NASA material is not protected by copyright unless noted". It is believed that the minimal usage of low resolution images of copyrighted NASA works, to illustrate the work in question, where no free equivalent is available,

  7. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  8. File:NASA TN D-7780 Apollo Experience Report - Spacecraft ...

    en.wikipedia.org/wiki/File:NASA_TN_D-7780_Apollo...

    This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.) Warnings:

  9. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.