Search results
Results From The WOW.Com Content Network
Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted).
If n is a small fixed number, then an exhaustive search for the solution is practical. L - the precision of the problem, stated as the number of binary place values that it takes to state the problem. If L is a small fixed number, then there are dynamic programming algorithms that can solve it exactly. As both n and L grow large, SSP is NP-hard.
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
Top-down approach: This is the direct fall-out of the recursive formulation of any problem. If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable ...
SLEPc Scalable Library for Eigenvalue Problem Computations is a PETSc-based open-source library for the scalable solution of eigenvalue problems. UMFPACK is a library for solving sparse linear systems, written in Ansi C. It is the backend for sparse matrices in MATLAB and SciPy.
A related problem, somewhat similar to the Birthday paradox, is that of determining the size of the input set so that we have a probability of one half that there is a solution, under the assumption that each element in the set is randomly selected with uniform distribution between 1 and some given value. The solution to this problem can be ...
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
The following problem classes are all convex optimization problems, or can be reduced to convex optimization problems via simple transformations: [7]: chpt.4 [10] A hierarchy of convex optimization problems. (LP: linear programming, QP: quadratic programming, SOCP second-order cone program, SDP: semidefinite programming, CP: conic optimization.)