When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]

  3. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  4. Standard probability space - Wikipedia

    en.wikipedia.org/wiki/Standard_probability_space

    A measurable subset of a standard probability space is a standard probability space. It is assumed that the set is not a null set, and is endowed with the conditional measure. See (Rokhlin 1952, Sect. 2.3 (p. 14)) and (Haezendonck 1973, Proposition 5). Every probability measure on a standard Borel space turns it into a standard probability space.

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset E {\displaystyle E\,} of the sample space Ω {\displaystyle \Omega \,} .

  6. Filtration (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Filtration_(probability...

    In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.

  7. Randomness - Wikipedia

    en.wikipedia.org/wiki/Randomness

    In this view, randomness is not haphazardness; it is a measure of uncertainty of an outcome. Randomness applies to concepts of chance, probability, and information entropy. The fields of mathematics, probability, and statistics use formal definitions of randomness, typically assuming that there is some 'objective' probability distribution.

  8. Gaussian probability space - Wikipedia

    en.wikipedia.org/wiki/Gaussian_probability_space

    In probability theory particularly in the Malliavin calculus, a Gaussian probability space is a probability space together with a Hilbert space of mean zero, real-valued Gaussian random variables. Important examples include the classical or abstract Wiener space with some suitable collection of Gaussian random variables.

  9. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    The name density matrix itself relates to its classical correspondence to a phase-space probability measure (probability distribution of position and momentum) in classical statistical mechanics, which was introduced by Eugene Wigner in 1932. [3]