When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Deepfake - Wikipedia

    en.wikipedia.org/wiki/Deepfake

    In order to assess the most effective algorithms for detecting deepfakes, a coalition of leading technology companies hosted the Deepfake Detection Challenge to accelerate the technology for identifying manipulated content. [173] The winning model of the Deepfake Detection Challenge was 65% accurate on the holdout set of 4,000 videos. [174]

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  4. Data analysis for fraud detection - Wikipedia

    en.wikipedia.org/wiki/Data_analysis_for_fraud...

    The machine learning and artificial intelligence solutions may be classified into two categories: 'supervised' and 'unsupervised' learning. These methods seek for accounts, customers, suppliers, etc. that behave 'unusually' in order to output suspicion scores, rules or visual anomalies, depending on the method. [8]

  5. Synthetic media - Wikipedia

    en.wikipedia.org/wiki/Synthetic_media

    Synthetic media (also known as AI-generated media, [1] [2] media produced by generative AI, [3] personalized media, personalized content, [4] and colloquially as deepfakes [5]) is a catch-all term for the artificial production, manipulation, and modification of data and media by automated means, especially through the use of artificial intelligence algorithms, such as for the purpose of ...

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  7. Kaggle - Wikipedia

    en.wikipedia.org/wiki/Kaggle

    Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

  8. Artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence

    Deep learning is a type of machine learning that runs inputs through biologically inspired artificial neural networks for all of these types of learning. [ 48 ] Computational learning theory can assess learners by computational complexity , by sample complexity (how much data is required), or by other notions of optimization .

  9. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Self-GenomeNet is an example of self-supervised learning in genomics. [18] Self-supervised learning continues to gain prominence as a new approach across diverse fields. Its ability to leverage unlabeled data effectively opens new possibilities for advancement in machine learning, especially in data-driven application domains.