Search results
Results From The WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 16 February 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
Interphase is the process through which a cell must go before mitosis, meiosis, and cytokinesis. [15] Interphase consists of three main phases: G 1, S, and G 2. G 1 is a time of growth for the cell where specialized cellular functions occur in order to prepare the cell for DNA replication. [16]
A cell during anaphase. Microtubules are visible in green. Stages of late M phase in a vertebrate cell. Anaphase (from Ancient Greek ἀνα-() 'back, backward' and φάσις (phásis) 'appearance') is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell.
In Streptococcus pneumoniae, transformation is induced by the DNA damaging agent mitomycin C. [18] These, and other, examples indicate that prokaryotic sex, like meiosis in simple eukaryotes, is an adaptation to stressful conditions. This observation suggests that the natural selection pressures maintaining meiosis in eukaryotes are similar to ...
In meiosis, DNA is replicated to produce a total of four copies of each chromosome. This is followed by two cell divisions to generate haploid gametes. After the DNA is replicated in meiosis, the homologous chromosomes pair up so that their DNA sequences are aligned with each other.
Following recombination, chromosome segregation occurs as indicated by the stages metaphase I and anaphase I in the meiosis diagram. Different pairs of chromosomes segregate independently of each other, a process termed “independent assortment of non-homologous chromosomes”. This process results in each gamete usually containing a mixture ...
The situation is quite different from that in animals, where the fundamental process is that a multicellular diploid (2n) individual directly produces haploid (n) gametes by meiosis. In animals, spores (i.e. haploid cells which are able to undergo mitosis) are not produced, so there is no asexual multicellular generation.
In general, nondisjunction can occur in any form of cell division that involves ordered distribution of chromosomal material. Higher animals have three distinct forms of such cell divisions: Meiosis I and meiosis II are specialized forms of cell division occurring during generation of gametes (eggs and sperm) for sexual reproduction, mitosis is the form of cell division used by all other cells ...