When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.

  3. Almost surely - Wikipedia

    en.wikipedia.org/wiki/Almost_surely

    Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon

  4. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().

  5. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Convergence in probability does not imply almost sure convergence in the discrete case [ edit ] If X n are independent random variables assuming value one with probability 1/ n and zero otherwise, then X n converges to zero in probability but not almost surely.

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    Law 3 is called the strong law because random variables which converge strongly (almost surely) are guaranteed to converge weakly (in probability). However the weak law is known to hold in certain conditions where the strong law does not hold and then the convergence is only weak (in probability).

  7. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    If is a stationary ergodic process, then () converges almost surely to = ⁡ [] . The Glivenko–Cantelli theorem gives a stronger mode of convergence than this in the iid case. An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm .

  8. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Uniform convergence implies both local uniform convergence and compact convergence, since both are local notions while uniform convergence is global. If X is locally compact (even in the weakest sense: every point has compact neighborhood), then local uniform convergence is equivalent to compact (uniform) convergence. Roughly speaking, this is ...

  9. Convergence space - Wikipedia

    en.wikipedia.org/wiki/Convergence_space

    An example of convergence that is in general non-topological is almost everywhere convergence. Many topological properties have generalizations to convergence spaces. Besides its ability to describe notions of convergence that topologies are unable to, the category of convergence spaces has an important categorical property that the category of ...