When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    A generative algorithm models how the data was generated in order to categorize a signal. It asks the question: based on my generation assumptions, which category is most likely to generate this signal? A discriminative algorithm does not care about how the data was generated, it simply categorizes a given signal.

  3. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.

  4. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed] Categorical features are discrete values that can be grouped into categories. Examples of categorical features ...

  5. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    In discrete choice theory, where instances represent people and categories represent choices, the score is considered the utility associated with person i choosing category k. Algorithms with this basic setup are known as linear classifiers. What distinguishes them is the procedure for determining (training) the optimal weights/coefficients and ...

  6. Discretization of continuous features - Wikipedia

    en.wikipedia.org/wiki/Discretization_of...

    Mechanisms for discretizing continuous data include Fayyad & Irani's MDL method, [2] which uses mutual information to recursively define the best bins, CAIM, CACC, Ameva, and many others [3] Many machine learning algorithms are known to produce better models by discretizing continuous attributes. [4]

  7. Continuous Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_Bernoulli...

    In probability theory, statistics, and machine learning, the continuous Bernoulli distribution [1] [2] [3] is a family of continuous probability distributions parameterized by a single shape parameter (,), defined on the unit interval [,], by:

  8. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    The online learning algorithms, on the other hand, incrementally build their models in sequential iterations. In iteration t, an online algorithm receives a sample, x t and predicts its label ลท t using the current model; the algorithm then receives y t, the true label of x t and updates its model based on the sample-label pair: (x t, y t).

  9. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  1. Related searches continuous category distributions examples in machine learning algorithms

    categorical distribution examplescategorical distribution definition
    categorical distribution wikipediacategorical distribution formula