When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric group on a finite set is the group whose elements are all bijective functions from to and whose group operation is that of function composition. [1] For finite sets, "permutations" and "bijective functions" refer to the same operation, namely rearrangement. The symmetric group of degree is the symmetric group on the set .

  3. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The symmetric group of degree n ≥ 4 has Schur covers of order 2⋅n! There are two isomorphism classes if n ≠ 6 and one isomorphism class if n = 6. The alternating group of degree n has one isomorphism class of Schur cover, which has order n! except when n is 6 or 7, in which case the Schur cover has order 3⋅n!.

  4. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    the product of two 2-cycles such as (1 2)(3 4) maps to another product of two 2-cycles such as (3 5)(4 6), accounting for 45 permutations; the product of a 2-cycle and a 4-cycle such as (1 2 3 4)(5 6) maps to another such permutation such as (1 4 2 6)(3 5), accounting for the 90 remaining permutations. And the odd part is also conserved:

  5. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The symmetry group of a snowflake is D 6, a dihedral symmetry, the same as for a regular hexagon. In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1][2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory and ...

  6. Permutation group - Wikipedia

    en.wikipedia.org/wiki/Permutation_group

    The degree of a group of permutations of a finite set is the number of elements in the set. The order of a group (of any type) is the number of elements (cardinality) in the group. By Lagrange's theorem, the order of any finite permutation group of degree n must divide n! since n-factorial is the order of the symmetric group S n.

  7. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    For n = 3, 4 there are two additional one-dimensional irreducible representations, corresponding to maps to the cyclic group of order 3: A 3 ≅ C 3 and A 4 → A 4 /V ≅ C 3. For n ≥ 7 , there is just one irreducible representation of degree n − 1 , and this is the smallest degree of a non-trivial irreducible representation.

  8. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a product of r ' s and f ' s. However, we have, for example, rfr = f −1, r 7 = r −1, etc., so such products are not unique in D 8. Each such product equivalence can be expressed ...

  9. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, [1 ...