When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  4. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  5. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.

  6. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    The dual form that arises in the creation of a kernel allows us to mathematically formulate a version of PCA in which we never actually solve the eigenvectors and eigenvalues of the covariance matrix in the ()-space (see Kernel trick).

  7. Matérn covariance function - Wikipedia

    en.wikipedia.org/wiki/Matérn_covariance_function

    In statistics, the Matérn covariance, also called the Matérn kernel, [1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. [2]

  8. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    is the j th column of and the subscript refers to that element of the matrix Θ i = Φ i P , {\displaystyle \Theta _{i}=\Phi _{i}P,} where P {\displaystyle P} is a lower triangular matrix obtained by a Cholesky decomposition of Σ u {\displaystyle \Sigma _{u}} such that Σ u = P P ′ {\displaystyle \Sigma _{u}=PP'} , where Σ u {\displaystyle ...

  9. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order Gaussian kernel. [14] The figure shows the joint density estimate that results from using the automatically selected bandwidth. Matlab script for the example